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ABSTRACT: Improving the energy output of batteries at sub-zero Ultra-Low Temperature Li
temperatures is crucial to the long-term application of advanced Metal Battery

electronics in extreme environments. This can generally be

accomplished by employing high-voltage cathodes, applying Li

metal anodes, and improving the electrolyte chemistry to provide - Roversible
facile kinetics at ultralow temperature. However, systems capable of

all three of these have seldom been studied. Herein, we demonstrate g K

the design of such a system through solvent fluorination, applying a M\ 4 ntormtanes

1 M LiPFg in a methyl 3,3,3-trifluoropionate (MTFP)/fluoro- ( ¢

ethylene carbonate (FEC) (9:1) electrolyte that simultaneously _ggoc
provided high-voltage cathode and Li metal anode reversibility at Stable 4.5V
room temperature. This performance was attributed to the

production of fluorine-rich interphases formed in the MTFP-

based system, which was investigated by X-ray photoelectron

spectroscopy (XPS). Furthermore, the all-fluorinated electrolyte provided 161, 149, and 133 mAh g~' when discharged at —40,
—50, and —60 °C, respectively, far exceeding the performance of the commercial electrolyte. This work provides new design
principles for high-voltage batteries capable of ultra-low-temperature operation.

ithium-ion batteries (LIBs) are a key technology for the large volume change associated with metal conversion

I operation of portable electronics in harsh environments compounded with the inherently high reactivity of metallic
such as high altitude and outer space. However, current Li often results in a low Coulombic efficiency (CE) during

LIBs are insufficient in terms of both energy density and the cycling, which fundamentally limits the cyclability of practical
ability to retain such an energy density at temperatures below Li metal batteries (LMBs) due to the repeated consumption of
=20 °C, severely limiting their applications.' ™ cyclable Li*.*' 7> These issues have been previously mitigated
To increase the baseline energy density of LIBs, it is crucial by designing advanced electrolytes,***™*° constructing

to employ Li metal anodes, which provide a theoretical 0-3
capacity of 3860 mAh g~ (vs 372 mAh g~' in graphite), and to
increase both the specific capacity and operating voltage of the
cathode."” In particular, LiNig3Co,;Mny;0, (NMC 811) has
been of primary interest due to its high but achievable
operating window (<4.5 V) and high capacity (>200 mAh
g™"),"" yet despite these promising attributes, the long-term
cycling stability is typically poor compared to those of cathodes
with less Ni (e.g., LiNiy5Coy,Mny30, or NMC 523), which is
generally a result of an increased level of parasitic electrolyte
reactions at high voltages, an increased level of gas generation,
and interfacial phase transformation.''~'* These issues have
been prev1ously mitigated by lattice substitution/surface
coatings'>~"” and advanced electrolyte formulations.”"*~*° Li
metal anodes face similar cycling stability issues, where the

® and applying porous three-

artificial Li surface coatings,’
dimensional hosts for Li deposition.”*

On the contrary, common organic electrolytes exhibit
notably sluggish charge transfer kinetics at low temperatures
in addition to extremely reduced ionic conductivity, often
freezing at temperatures below —20 °C. These factors result in
significantly reduced cell output voltage and capacity.”*”"~*
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Figure 1. Properties of different electrolytes. (a) LSV profiles of conductive carbon electrodes in selected electrolytes at 1 mV s™". (b) Image
of selected electrolytes at —60 °C. (c) Ionic conductivity of selected electrolytes measured at different temperatures. Li* radial distribution
functions, snapshots, and representative solvation structures from MD simulations of (d) 1 M LiPF; EC/DEC (1:1), (e) 1 M LiPF; MP/FEC

(9:1), and (f) 1 M LiPF; MTFP/FEC (9:1) electrolytes.

So far, traditional electrolyte chemistries have not been shown
to support high-voltage cathodes for LMBs at extremely low
temperatures. The poor energy retention of LIBs at low
temperatures has generally been attributed to the internal
resistances associated with Li* conduction through the bulk
electrolyte, interfacial migration of Li* at the electrode
interfaces, and Li" desolvation, which has been suggested to
play an especially important role.”*°~> These resistances have
been primarily addressed in previous studies through improve-
ments in the battery electrolyte, employing novel salt
additives,”””® and employing low-melting point™*~*’ and/or
low-polarizability®>~>° solvents with low viscosity. In spite of
this progress, a system providing high energy retention at low
temperatures and stable performance for high-voltage cathodes
and Li metal anodes has yet to be reported to the best of our
knowledge.

Herein, we propose and demonstrate a novel all-fluorinated
carboxylate ester-based electrolyte that simultaneously pro-
vides stable long-term NMC 811 cycling at the high-voltage
cutoff of 4.5 V and significantly improved Li metal deposition
morphology and cycling efficiency, all while conserving the
excellent low-temperature performance provided by non-
fluorinated carboxylate ester-based systems.’”*>°° In this
work, we take a major step to achieve high-voltage LMBs that
can be operated at ultralow temperatures through solvent
fluorination, which is well-known to improve the oxidative
stability of systems via the production of electrochemically
stable fluorinated interphases.”*******° This all-fluorinated
ester system was found to provide an extremely stable NMC
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811 capacity retention of 80% after 250 cycles with a cutoff
voltage of 4.5 V, as well as superior Li metal performance,
resulting in a practical Li (2-fold excess)lINMC811 full cell that
provided 80 cycles of stable performance, long after
comparable systems (nonfluorinated ester and carbonate)
failed. In addition to its ability to support high-energy battery
chemistries, the investigated electrolyte provided capacities of
161, 149, and 133 mAh g_1 when discharged at —40, —50, and
—60 °C, respectively, a performance far superior to that of the
standard carbonate control. We attribute this cycling stability
to the fluorine-dominated interphases formed during cycling
and the low-temperature performance to the physical proper-
ties of carboxylate ester solvents that yielded a high ionic
conductivity of 0.75 mS cm™" at —60 °C. This work provides a
viable route for the future design of bifunctional electrolytes in
support of stable high-voltage Li metal batteries at ultralow
temperatures.

To provide a viable low-temperature control, methyl
propionate (MP) was applied as the primary solvent with a
10% (v/v) fluoroethylene carbonate (FEC) additive and 1 M
LiPF, salt to form an electrolyte system similar to that of our
previous study, in which 10% FEC was found to be the
minimum amount required to maintain electrochemical
stability while providing improved low-temperature perform-
ance.”” To further improve the electrochemical stability of this
system for high-voltage applications, we substitute MP with its
fluorinated counterpart, methyl 3,3,3-trifluoropionate
(MTFP), which has been previously agplied to high-voltage
systems as a low-percentage additive.”’ The substitution of

https://dx.doi.org/10.1021/acsenergylett.0c00643
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Figure 2. Room-temperature electrochemical behavior of selected electrolytes in NMC 811IILi half-cells. (a) Cycling performance at 0.5 C.
(b) Voltage profiles at the 250th cycle. (c) Nyquist plots after cycling for 250 cycles at 0.5 C.

fluorine groups is well-known to decrease the HOMO energy
of molecules due to the high ionic potential, high electro-
negativity, and low polarizability of the fluorine atom, resulting
in an increased resistance to oxidation.”*%***%%7% Tg
preliminarily confirm the hypothesized electrolyte stability
trends, linear scan voltammetry (LSV) measurements were
carried out on conductive carbon electrodes (Supporting
Information) to provide an accurate representation of
performance in practical cells. As presented in Figure Ia,
both 1 M LiPF; MP/FEC and 1 M LiPF, ethylene carbonate
(EC)/diethyl carbonate (DEC) (1:1 volume) systems exhibit
significant anodic current at ~5.0 V versus Li/Li* (indicative of
electrolyte decomposition), whereas the 1 M LiPF, MTFP/
FEC system does not show the same behavior until ~5.8 V. It
is noteworthy that the MTFP-based electrolyte displays a small
peak at ~4.75 V, far before decomposition, which likely
indicates the formation of a passivating CEI on the electrode
surface. This trend was confirmed by gas phase, electronic
structure calculations at the density functional theory (DFT)
level of theory in Figure S1. We note, however, that such DFT
calculations cannot inherently capture the complexity of
decomposition mechanisms between the various system
components in the multicomponent mixtures; however, such
results do provide a qualitative indication of the onset of
runaway oxidation in the systems of interest. In both
electrolyte systems, we also note that the oxidative stability is
further increased by the addition of 10% FEC, which is known
to form passivating layers on both the anode side and the
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cathode side and yields a stability that is greater than those of
the pure solvent systems (Figure $2).!%%3055,64=70

As previously stated, designing an electrolyte for ultra-low-
temperature batteries requires the employment of solvents
with a low melting point and a low viscosity, yielding a high
ionic conductivity at low temperatures. As observed in Figure
1b, both ester-based electrolytes remain in a liquid state at —60
°C, while the typical carbonate electrolyte becomes frozen,
indicating the higher melting points of carbonates compared to
those of esters (Table S1). These observed trends are further
substantiated by a comparison of the ionic conductivity of
selected electrolytes with decreasing temperature measured via
electrochemical impedance spectroscopy (EIS) in Figure lc. It
was found that 1 M LiPF, MTFP/FEC displayed a trend
comparable to that of 1 M LiPF4, MP/FEC, where the former
retained an impressive ionic conductivity of 0.75 mS cm™" at
—60 °C, far exceeding that of 1 M LiPF; EC/DEC, which was
found to decrease to 0.005 mS cm™.

To provide further insights into the solvation structure
present in each electrolyte, classical molecular dynamics (MD)
simulations were conducted as detailed in the Supporting
Information. As displayed in Figure 1d, the radial distribution
function of Li* in the 1 M LiPF; EC/DEC system displayed a
characteristic solvent-separated ion pair (SSIP) structure, in
which the Li" ions are primarily coordinated by solvent
molecules (Li*/solvent coordination number of 3.7), excluding
PF4™ to the secondary solvation shell. On the other hand, the
MP/FEC and MTFP/FEC systems (Figure lef) display a
structure in which PF4” partially participates in the solvation,

https://dx.doi.org/10.1021/acsenergylett.0c00643
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Figure 3. Room-temperature Li metal performance of selected electrolytes. (a) Coulombic efficiency measurements in LillCu cells according
to the accurate measurement procedure.”” (b) SEM images of 1 mAh cm™> Li metal plated at 0.5 mA cm™ in selected electrolytes. (c)

Cycling performance of Lil[NMC 811 full cells with a 2-fold excess Li

capacity.

with calculated Li*/solvent coordination numbers of 3.3, and
2.7, respectively. This configuration is similar to the contact
ion pair (CIP) structure, which has commonly been observed
in previous literature regarding electrolytes containing a high
salt concentration, or low-polarizability solvents.”**"”'~"
While this solvation structure is commonly associated with
highly desirable properties, including a high Li" transference
number and improved electrochemical stability at room
temperature, the effect of this structure at low temperatures
has not been studied to the best of our knowledge and will be
studied further.”"”

It is well-known that typical commercial electrolytes, such as
1 M LiPF; EC/DEC, suffer parasitic reactions and oxidative
decomposition at high voltages (typically >4.3 V), yielding
corrosive species such as HF and organic deposits that are

144

ineffective in protecting the cathode.””’*”"7 To test the
practical stability of the MP- and MTFP-based electrolytes, we
conducted cycling tests of NMC811IILi half-cells with an
aggressive cutoff voltage of 4.5 V to exploit the high capacity of
the nickel-rich cathode. As observed in Figure 2a, the cells in 1
M LiPF; MP/FEC and 1 M LiPF4 EC/DEC both retain only
53% of their original capacity after 250 cycles, whereas the
MTFP-based electrolyte provides a significantly improved
capacity retention of 80% under the same conditions. Figure
2b displays the charge—discharge profiles of the 250th cycle of
each cell employing selected electrolytes, where a significantly
larger polarization and capacity degradation can be observed in
the cell using the MP-based and carbonate-based electrolytes.
These observations are likely a consequence of the oxidative
decomposition of the electrolyte on the cathode surface.”**”*

1 https://dx.doi.org/10.1021/acsenergylett.0c00643
ACS Energy Lett. 2020, 5, 1438—1447


https://pubs.acs.org/doi/10.1021/acsenergylett.0c00643?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00643?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00643?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.0c00643?fig=fig3&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://dx.doi.org/10.1021/acsenergylett.0c00643?ref=pdf

ACS Energy Letters

http://pubs.acs.org/journal/aelccp

a CE, CF b
NMC 811 F1s  (Binden: | 01s 5%
Pristine / \\:E/.M'E ﬁfczrme
= = T : L = _18.7% Oxygen
250 Cycles § _ 159%
1 M LiPFg | 3 >
EC/DEC g < 3%
' > Phosphorus
. . : % Oxygen 20.2%
250 Cycles ' i § \157%
1 M LiPFg o IS
MP/FEC :
' 1.7%
2 | Phosphorus
H 15.4% Oxygen
250 Cycles S0%
1 M LIPF6 Fluorine
MTFP/FEC
. . . ) 4%
p—y z - - Tl . . r - - Phosphorus
692 690 688 686 684 682 536 534 532 530 528
Binding Energy (eV) f
d e
Li Metal C 15 CO; :O C-C/C-H F 15 C-F
. ! Fl
1 M LiPFg e 5 Li-E 1:°s;|/:c
EC/DEC / N | .
i : S =2 e~ Carbon 30.5%
. & i :
. tsace > i H
1™M LIPFG y. ‘D ! E Fluorine
MP/FEC , 5 5 iy 16:2%
S =3 R R
i i ' ) ) Carbon 36.9%
1 M LiPFg Fluorine
MTFP/FEC e -y : 59.6%
ocvs L.ener™ et _:‘~ — . %"“-ns'_L
292 282 690 688 686 684 682 680 Oxygen

Binding Energy (eV)

Carbon

0,
7% 23.4%
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For a deeper insight into this trend, EIS measurements were
conducted on the cells after 250 cycles (Figure 2c), where the
cell employing the MTFP-based electrolyte exhibits a charge
transfer impedance (R,) significantly lower than that of the
cell using a MP-based or carbonate-based electrolyte.

One feature of the MTFP-based electrolyte that is worth
noting is the initial Coulombic efficiency (CE) of the first
cycle, which ranks among the lowest of the investigated
systems (60%, as opposed to ~85% for both 1 M LiPF; MP/
FEC and 1 M LiPF; EC/DEC) before approaching 100% in
the subsequent cycles. We attribute this to the formation of a
robust CEI in the first cycle that serves to stabilize the long-
term cycling of the cathode.

In addition to the long-term cycling stability of the cathode,
a high Li metal CE is required for the application of high-
voltage Li metal batteries. To measure this, we conducted
testing with the commonly applied accurate CE measurement
procedure developed by Adams et al.”’ to LillCu cells, which
can be found in Figure 3a. We calculated that the MTFP/FEC
system provided performance vastly superior to that of MP/
FEC and EC/DEC electrolytes, exhibiting a CE of 97.6%
compared to values of 6.2% and 87.7%, respectively. The
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morphologies associated with this vast divergence in CE were
then examined via scanning electron microscopy (SEM) as
shown in Figure 3b, where the EC/DEC and MP/FEC
electrolytes were found to produce a highly dendritic Li
structure, which is commonly found in similar systems with
poor reductive stability.””>**’ The MTEP/FEC system, on the
other hand, produced exceedingly large Li chunks without
noticeable dendrites, which are typically associated with a small
surface area and a low porosity and thus minimize
decomposition reactions with the electrolyte.”>** Furthermore,
these promising results were put to a more rigorous test, in
which practical full cell LMBs were constructed with only a 2-
fold excess of Li compared to NMC 811 (N/P = 2), which
corresponds well to the goals set by the Battery 500
consortium." This full cell was found to retain 88% capacity
after 80 cycles, whereas the full cell employing 1 M LiPF4 EC/
DEC began to sharply degrade before 10 cycles had been
performed (Figure 3c). Hence, it was determined that the
MTFP/FEC electrolyte could provide remarkable stability for
high-voltage Li metal batteries on both the cathode side and
the anode side.

https://dx.doi.org/10.1021/acsenergylett.0c00643
ACS Energy Lett. 2020, 5, 1438—1447
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Figure S. Low-temperature discharge behavior of selected electrolytes in NMC 811IILi half-cells at 0.1 C. Voltage profiles of NMC 811IILi
cells in (a) 1 M LiPF4 EC/DEC, (b) 1 M LiPF; MP/FEC, and (c) 1 M LiPF; MTFP/FEC. (d) Room-temperature capacity retention.

To further probe the interphases formed in each electrolyte,
X-ray photoelectron spectroscopy (XPS) was applied to the
NMC 811 cathodes before and after cycling, and the 1 mAh
cm™? of Li metal plated in each system. As observed in the
comparison of C 1s spectra (Figure S5a), the overall intensity
of the cycled cathodes decreases significantly and shifts toward
organic oxygen species, indicating the presence of the CEI after
cycling. Comparison of the F 1s spectra (Figure 4a) indicates
two primary fluorine-based CEI components: Li—F/M—F
(~685.3 eV), which is typically a product of the decomposition
of LiPF4 and or FEC (when applicable), and C—F (~687.7
eV), which is likely a product of similar salt/solvent
decomposition reactions.””® While little deviation can be
observed in the F 1s spectra between cathodes cycled in
carbonate and MP-based electrolytes, the MTFP-based
electrolyte yields a CEI clearly dominated by C—F. Organic
fluoride dominant CEI compositions are rarely observed in the
literature; 29758981 however, we believe such an interface is
responsible for the highly stable performance provided by the
MTEFP/FEC system. Further comparison with the O 1s spectra
found in Figure 4b reveals an increased presence of O—C=0
(~534.4 eV), which may suggest that the CEI primarily
consists of fluorinated polyesters. Quantitative analysis of the
XPS results (Figure 4c) further confirms a higher atomic
fluorine content and a lower content of carbon overall in the
NMC 811 CEI after cycling in the 1 M LiPF; MTFP/FEC
system. The atomic fluorine percentages for the MTFP/FEC,
MP/FEC, and EC/DEC electrolyte system are 30%, 19.7%,
and 15.9%, respectively, while the corresponding atomic
carbon contents are 52.2%, 58.4%, and 63.1%, respectively.
Furthermore, this high fluorine content was observed to be
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uniformly distributed through the NMC 811 particle, as shown
in Figure S6.

The XPS profiles of the solid electrolyte interphase (SEI) on
plated Li of each electrolyte show a similar trend. First, we
observed a substantial decrease in the overall level of carbon
found in the MTFP system, primarily due to the reduced
CO;*" peak as shown in Figure 4d. Most importantly, we note
the extreme increase in the level of Li—F on the surface of
plated Li in the MTFP/FEC system (Figure 4e), where the
overall fluorine content was found to be 59.6%, as compared to
the values of 16.2% and 14.9% found in the MP/FEC and EC/
DEC electrolytes, respectively (Figure 4f). Li—F is known to
be particularly desirable as a SEI component for Li metal
anodes, due to its electrochemical stability and its stron
correlation to systems providing a high cycling CE.>*~>%%°°
Hence, we believe highly fluorinated interphases result in both
the stable cycling of NMC 811 at high voltages and the high
CE of Li metal plating demonstrated by the MTFP/FEC
electrolyte.

To demonstrate the advantage of the designed ester
electrolytes at low temperatures, NMC 811IILi half-cells were
tested using a method commonly applied in low-temperature
battery studies, in which the cells were charged at room
temperature followed by discharge at low temperatures to
simulate practical device applications (Supporting Informa-
tion).>**>*4730 Although the origins of low-temperature
performance degradation remain controversial, the primary
limiting factors are generally believed to be the reduced bulk
ionic conductivity of the electrolyte and a severe reduction in
charge transfer kinetics, which has been suggested to be
dominated by Li* desolvation.””***~**%! In terms of these
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metrics, we believe our ester electrolytes are superior in every
respect, owing to the high retention of ionic conductivity at
ultralow temperatures and the introduction of FEC, which has
been noted to have a Li" solvation energy significantly lower
than that of EC, allowing for facile desolvation.>*

The voltage profiles of these tests are displayed in Figure
Sa—c, and the retention versus temperature for each system is
summarized in Figure 5d. From these data, we observe that the
typical carbonate electrolyte was unable to support the low-
temperature operation of the cell, failing to offer any significant
capacity (~10%) at —40 °C due to the high melting point of
EC/DEC, as well as the strong binding between Li" and
EC.>>**7* By contrast, the ester electrolytes made remarkable
progress in enhancing low-temperature device performance,
where the MP/FEC system provided room-temperature
capacity retention of 79.4%, 75.0%, and 69.7% at —40, —50,
and —60 °C, respectively, which corresponds well to the
cathode impedance trends shown in Figure S8. While the
MTFP/FEC system provided slightly reduced retention of
73.7% and 66.2% at —S50 and —60 °C, respectively, the
relatively small discrepancy is likely due to the reduced ionic
conductivity of the MTFP/FEC system. Despite this, the
significantly improved stability of the NMC811 cathode at
high voltages in addition to its vastly improved Li metal
performance indicates the clear superiority of the MTFP/FEC
system, in which the baseline energy density of the battery can
be improved while conserving remarkable capacity retention at
ultralow temperatures.

In summary, we have developed a novel all-fluorinated
carboxylate ester-based electrolyte for LIBs, which was found
to simultaneously provide high capacity retention at ultralow
temperatures, remarkable oxidative stability in support of high-
voltage, nickel-rich cathodes, and high-efficiency Li metal
cycling with a homogeneous deposition morphology. Specif-
ically, employing 1 M LiPF, in MTFP/FEC (9:1 volume ratio)
yielded a capacity retention of 80% for NMC 811IILi half-cells
charged to 4.5 V after 250 cycles, whereas the analogous 1 M
LiPF¢ in MP/FEC (9:1) and 1 M LiPF¢ in EC/DEC (1:1)
provided a retention of only 53% under the same conditions.
On the anode side, the MTFP/FEC system provided a Li
metal CE of 97.6%, compared to the values of 6.2% and 87.7%
found in the MP/FEC and EC/DEC systems, respectively,
which produced a 2-fold excess LillNMC 811 full cell that
retained 88% of its capacity after 80 cycles. This remarkable
stability was attributed to the highly fluorinated interphases
produced by the MTFP/FEC system found on both the
cathode side and the anode side. At ultralow temperatures, the
MTFP/FEC system was also found to produce performance
comparable to that of the MP/FEC system, which has been
previously noted for its remarkable performance at low
temperatures, retaining 161, 149, and 133 mAh g~' when
discharged at —40, —50, and —60 °C, respectively, at a rate of
0.1 C. In the future, further exploration of novel electrolyte
components and high-voltage cathode chemistries may prove
to be crucial to the future of portable electronics in extremely
cold environments. This work provides an early route to
enabling high-voltage, nickel-rich cathode LMBs at ultralow
temperatures.
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