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a b s t r a c t

Over the past decade, major progress in diagnosis of battery degradation has had a substantial effect on
the development of electric vehicles. However, despite recent advances, most studies suffer from fatal
flaws in how the data are processed caused by discrete sampling levels and associated noise, requiring
smoothing algorithms that are not reliable or reproducible. We report the realization of an accurate and
reproducible approach, as “Level Evaluation ANalysis” or LEAN method, to diagnose the battery degra-
dation based on counting the number of points at each sampling level, of which the accuracy and
reproducibility is proven by mathematical arguments. Its reliability is verified to be consistent with
previously published data from four laboratories around the world. The simple code, exact fitting,
consistent outcome, computational availability and reliability make the LEAN method promising for
vehicular application in both the big data analysis on the cloud and the online battery monitoring,
supporting the intelligent management of power sources for autonomous vehicles.

© 2020 Published by Elsevier B.V.
1. Introduction

The world is becoming increasingly reliant on batteries for
multiple facets, such as portable electronic devices [1,2], electric
vehicles [3e5], and stationary electrical storage [6]. Long cycle life
is one of the most significant features for the batteries in applica-
tion [7,8]. The diagnosis of battery degradation is of great signifi-
cance in the intelligent energy management of all kinds of
ang), hexm@tsinghua.edu.cn
electrochemical power sources [9e11]. Yet, degradation is highly
unpredictable creating huge uncertainties over lifetime and total
cost of ownership, setting a critical barrier for their widespread
economic adoption. Researchers have developed a wide range of
diagnostic techniques that can be used to understand degradation
[12,13]. These techniques range from destructive ex situ experi-
ments to in situ experiments. A number of the most promising in
situ techniques, particularly those with the potential to be used
during application, can be classified as ‘differential techniques’,
which compare the rate of change in current to the rate of change in
voltage, or vice versa, such as the incremental capacity analysis
(ICA) or the differential voltage analysis (DVA), or the rate of change
in temperature to the rate of change in voltage, such as the differ-
ential thermal voltammetry (DTV).

In 1967, Balewski and Brenet [14] published the first paper using
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ICA to characterize the electrochemical reactivity of manganese
dioxide. Dahn et al. [15] and Tillement and Quarton [16] endorsed
the use of ICA by applying it to the characterization of the elec-
trochemical insertion of cell materials. Since 2005, Dubarry et al.
[17,18] have pioneered the application of ICA for full-cell degrada-
tion analysis. The ICA technique is similar to cyclic voltammetry
(CV) [19] in characterizing battery behaviour [20,21] but is typically
faster and can also be applied to characterize the performance of
large-format batteries [22]. Using ICA to characterize battery per-
formance has received increasing attention, and the number of
research papers has continuously increased over the past five years.
DVA is complementary to ICA because their results are reciprocals
[19]. Bloom et al. [23] first used DVA to characterize capacity
degradation, followed by Honkura et al. [24] and others [25,26]. In a
significant recent development, Wu et al. [27] proposed a new
approach termed differential thermal voltammetry (DTV) to track
battery degradation in a similar fashion to ICA but using temper-
ature as the alternative signal to current, whichmakes it possible to
analyse cells in parallel and does not require constant temperature
conditions.

However, there is a challenge that prevents ICA, DVA and DTV
from becoming standardized tools for degradation analysis, either
in the lab or during application. Taking derivatives of discrete
Fig. 1. Overview of the method and motivation. a (Left) The voltage curve under 1/3C rate
magnified figure shows the actual raw data, including sampling levels and noise. a (Right) Th
in the graphite anode. a (Middle-Top) The traditional method that uses smoothing techniq
Bottom) The proposed method, termed Level Evaluation Analysis (LEAN), which directly co
traditional method. First, multiple optimal results of curve fitting are possible during smoo
peaks. c Comparison of the computational complexity G(n). G(n) is usually Q(n2) for the cu
signals with sampling levels and significant noise introduces mul-
tiple problems [28], as shown in Fig. 1, requiring data to be
manipulated in various ways before it can be used. There is
currently no standardized approach to manipulate data, and
therefore, it is often not possible to compare data. The challenge of
calculating the differentiation between discrete sampling signals
that contain levels due to digital sampling with specific resolution
and noise has thwarted scientists for years. An intuitive solution is
to transfer signals with discrete levels and random noise into
smoothed and differentiable functions, so-called “curve fitting”, as
the fitted curves have continuous functions that are more easily
differentiable.

In 1964, Savitzky and Golay [29] proposed an approach to
smooth and differentiate sampled data using piecewise polynomial
curve fitting with optimality obtained by least squares fitting. The
method has been widely accepted as the famous SG method and
has been cited more than 15,000 times. Craven and Wahba [30]
improved upon the SGmethod, which can give large fluctuations in
the results of high-order polynomial coefficients, by regulating the
derivatives using generalized cross-validation techniques. Samad
et al. [31] successfully applied the SG method to calculate the ICA
curves for battery degradation analysis. In recent years, techniques
for optimal curve fitting have been greatly improved upon through
charging for a 60Ah commercial lithium-ion cell with LiFePO4/graphite electrodes. The
e ideal IC curve that contains three characteristic peaks, which reflect the phase changes
ues first and then calculates the differentiation of the smoothed function. a (Middle-
unts the numbers at each voltage level to acquire the IC curve. b The problem of the
thing. Second, over-fitting/under-fitting misrepresents the shape and location of the IC
rve-fitting method, whereas G(n) ¼ Q(n) for the proposed LEAN method.
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the use of artificial intelligence [32]. Weng et al. [33] and Wang
et al. [34] used support vector machines, which is a basic technique
in pattern recognition for kernel-based curve fitting, to smooth the
sampling data and calculate the ICA curves by linearized support
vector regression (SVR). Weng et al. [35] further extended the usage
of SVR from processing the IC curves for cells to that for a battery
pack.

However, smoothing approaches, including both SG and SVR,
share inherent deficiencies: ① The adjustable parameters in the
smoothing algorithms influence the result of curve fitting, espe-
cially the peak position and height of the IC curve, which are critical
indicators of battery thermodynamics; ② Under-fitting or over-
fitting is possible, thereby distorting the information in the raw
data;③ Due to the deficiencies in① and②, different researchers in
different labs will have diverse results in ICA/DVA/DTV, thereby
undermining the confidence of the results in publications and re-
ports;④ The computational complexity of curve-fitting algorithms
is always Q(n2), where n is the total length of the data to be
smoothed, making it impractical to apply curve-fitting methods for
the purpose of online performance characterization.

These implicit facts ①-④ are rarely discussed but significantly
limit the usefulness of such techniques in real-world imple-
mentations. In this paper, we propose an approach named “Level
Evaluation ANalysis” (LEAN) to calculate the differentiations by
counting the numbers at the sampling levels. The LEAN method
was proved to be equivalent to ICA and DVA after careful consid-
eration of battery degradation data and curve-fitting codes from
Tsinghua University [36e38], Imperial College London [39], and
University of Michigan [40]. Further discussions convinced us that
the LEAN method can overcome all four deficiencies of traditional
methods of differential analysis and demonstrated that the LEAN
method has the following advantages: (i) very simple code with
only a few parameters to adjust; (ii) no under-fitting or over-fitting;
(iii) different researchers at different labs will derive the same re-
sults for ICA/DVA/DTV for the same set of data; and (iv) the
computational complexity is Q(n), making the LEAN method
promising for further vehicular application in both the big data
analysis on the cloud and the online batterymonitoring, supporting
the intelligent management of all kinds of electrochemical energy
storage systems for electric vehicles, portable electronics, and po-
wer station.
2. Experimental

Battery degradation data from Tsinghua University (THU)
[36e38], Imperial College London (ICL) [39], and University of
Michigan, Ann Arbor (UoM) [40] were collected for cross validation
of the LEAN method, as in Table 1. Cells A, C, E and F were tested by
THU, Cell B was tested by UoM, and Cell D was tested by ICL. To
ensure the universality of the LEAN method, the six selected cells
cover various chemistries under commercial use, with awide range
of capacities from 5 Ah to 60 Ah and galvanostatic current rates
Table 1
Degradation test for validation of the LEANmethod. The abbreviations for the cathode a
The abbreviations for the anode are as follows: 1) C¼ carbon- or graphite-based anode and
manufacturers.

Cell Cathode Anode Capacity (Ah)

A LFP C 60
B LFP C 1.1
C NCM C 48
D NCM C 5
E NCM þ LMO C 20
F NCM LTO 15
(both charging and discharging) from 1/3Ce2C, and also at
different aging status.

3. Methods

3.1. The sampling data of battery tests

The sampling data of battery tests usually displays the stair-like
feature as shown in Fig. 2(a), when we magnify the voltage curves
to see the details. The stair-like feature is naturally formed when
the monitoring system is using digital sampling chips. Direct dif-
ferentiation by subtracting adjacent data points seems impossible,
because the results contain many zeros (0) or infinities (∞). Intui-
tively, textbook tells us that curve-fitting is essential to smooth the
sampling data y with an explicit function f (x), then the differen-
tiation of the sampling data can be calculated by f 0ðxÞ.

3.2. The curve fitting method

3.2.1. The canonical form
Assume x and y represent the input and output data to be fitted,

respectively. For the battery sample-data for differentiation pur-
pose, x can be the time t, the charged/discharged capacity Q, or the
state-of-charge SOC, whereas y is the sampled voltage V. Let vector
x¼ {x1, x2, x3… xn} and y¼ {y1, y2, y3… yn} be the data set of x and y,
respectively. n is the total number of data for curve fitting. For the
Canonical Form, the output data y is fitted using a function f (x):

by¼ f ðxÞ (1)

where by is approximation of the fitted curve. The estimation error e
is defined by:

e¼ y � by (2)

All kinds of curve fittingmethod are trying to find an optimized f
(x) that can minimize some forms of e. For instances, to find f (x)
that minimizes J ¼ eTe is common in quadratic optimization. The

differentiations dy
dx or

dx
dy can be calculated by the differentiation of

f(x), which has explicit expression:8>>><>>>:
dy
dx

¼ f 0ðxÞ

dx
dy

¼ 1
f 0ðxÞ

(3)

3.2.2. The SG method
The SG method was created by Savitzky and Golay29 in 1964 for

smoothing and differentiating sampling data using piecewise
polynomial functions with optimality obtained by least squares
fitting. To acquire the differentiations of V (y) at time t (x), the
re as follows: 1) LFP¼ LiFePO4, 2) NCM¼Li(NixCoyMn1-x-y)O2, and 3) LMO¼ LiMn2O4.
2) LTO¼ Li4Ti5O12. The voltage ranges complywith the instructions provided by the

Voltage (V) Current Institute Data Ref.

2.75e3.6 1/3C CHA THU [36]
3.0e3.55 1/2C CHA UoM [40]
3.0e4.2 1/3C CHA THU [36]
2.7e4.2 2C DIS ICL [39]
2.5e4.2 1/2C DIS THU [38]
1.5e2.7 1/3 CHA THU [37]



Fig. 2. The curve fitting methods. a The canonical form of curve fitting, and the differentiation is calculated from the fitted function. b The under-fitting problem that is common
for curve fitting methods. c The overfitting problem caused by fitting the sampling stairs. d The overfitting problem caused by fitting the noise.
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piecewise sampling data y are fitted as:

y¼ ½yk�w; yk�wþ1; :::yk�1; yk; ykþ1; :::ykþw�1; ykþw�T (4)

where the window length is 2wþ1. The SGmethod tries to fit y by by
using polynomial functions f with an order of p:

by¼ f ðxÞ ¼ cT,kðxÞ ¼
Xp
i¼0

ci,x
i (5)

where c ¼ [c0, c1, …cp]T 2 R(pþ1)�1 and k(x) ¼ [1, x, x2, …xp]T. To
compare the fitting errors calculated from the piecewise data, a
vector by with a length of 2wþ1 is generated as follows:
by¼½f ð�wÞ; f ð�wþ1Þ; :::f ð�1Þ; f ð0Þ; f ð1Þ; :::f ðw�1Þ; f ðwÞ�T¼G,c
(6)

where the matrix G ¼ [g0, g1, g2, …gp]T 2 R(2wþ1)�(pþ1) and the
vector gk¼ [-wk, (-wþ1)k,…, (�1)k, 0k, 1k,…(w-1)k,wk]T. Define e as
the vector for the errors calculated from the piecewise data such
that:

e¼ y � by ¼ y � G,c (7)

and the SG method performs the following optimization:
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min
c

eTe¼min
c

ðy � G,cÞT ðy�G , cÞ (8)

c is the optimal solution for the quadratic optimization, and the
incremental capacity (IC) at time tk is the reciprocal of c1.

c¼
�
GTG

�
,GTy (9)

dQ
dV

����
t¼tk

¼ I,
dt
dV

����
t¼tk

¼ I,
dx
dy

¼ I,
1

f 0ðxÞ ¼ I,
1
c1

(10)
3.2.3. The SVR method
The SVRmethod is the application of a support vector algorithm

in artificial intelligence, which was initially developed by Drucker
et al. at&T Bell Laboratories for data regression [41]. The data are
fitted using a linearized parametric model:

by¼ f ðxÞ¼ cT , kðxÞþm¼
Xn
k¼0

ck , kðxk; xÞ þ m (11)

where c¼ [c0, c1,…cn]T2 Rn�1, n is the total sampling number in SV,
m is the offset constant, kðxÞ ¼ ½kðx1; xÞ; kðx2; xÞ; :::kðxn; xÞ�T is the
vector of kernels, and x can be the time t or the state of charge SOC.
The arbitrary kernel function k(xk, x) is defined as:

kðxk; xÞ¼ exp
��kxk � xk2

2s2

�
(12)

where s is a pre-set parameter to control the shape of k(xk, x).
Define ε as the precision parameter that set some tolerance for the
fitting error and slack variables xþk and x�k to cope with infeasible
constraints such that:

xk ¼

8>><>>:
xþk ¼ y� by � ε; ðy> by þ εÞ
x�k ¼ by � ε� y; ðy< by � εÞ
0; otherwise

(13)

Then, SVR using l1 regularization formulates the optimization
problem as follows:

min
c;m;xþ;x�

kck1 þ l
Xn
k¼1

�
x�k þ xþk

�

subject to

8>>>>>>>><>>>>>>>>:

yk � byk � εþ xþkbyk � yk � εþ x�k

xþk � 0

x�k � 0

(14)

where l is the weighting factor and ||$||1 denotes the l1 norm in the
coefficient space. The optimization problem is solved using the
function linprog in MATLAB®. As the computational complexity of
the problem is Q(n2), the data are always re-sampled with a dis-
tance of D (D ¼ 200 in this paper); therefore, the optimization can
be downsized to n/D. The optimal result usually gives a near-zero
value for most of the ci, and those ci that are much larger than
zero (>10�4) are regarded as significant. The corresponding xi is
called the support vector svi, of which the total number is Nsv.
Therefore, the curve-fitting model is built as:
by¼ f ðxÞ¼ cT , kðxÞþm¼
XNsv

i¼0

ci , kðsvi; xÞ þ m (15)

Furthermore, the incremental capacity can be calculated by:

dQ
dV

����
t¼tk

¼ I,
dt
dV

����
t¼tk

¼ I,
dx
dy

¼ I,
1

f 0ðxÞ (16)

3.2.4. The under-fitting/overfitting problem
Most of the curve fitting methods suffer from under-fitting or

overfitting problem. Fig. 2(b)e(d) illustrates the possible under-
fitting and overfitting problems that undermines the reliability of
curve fitting in calculating differentiations. Fig. 2(b) shows a case
for under-fitting, which means that although there are changes in
the curvature, the fitting algorithm neglects the details and reports
a smoothed constant. Under-fitting is common when the con-
straints for optimization are too loose. Fig. 2(c) illustrates an
overfitting case caused by fitting the stair-like sampled voltage,
which should be smoothed out during optimization. Extra peaks
can be observed in the dx/dy curves at each level of the voltage
stairs, as long as the curve fitting method tries to track the shape of
stairs. Moreover, overfitting may occur if there are noises in the
sampling sequence, as shown in Fig. 2(d). The curve fittingmethods
may try to fit the noise when the constraints for optimization are
too tight. However, how to define “loose” and “tight” in setting the
optimization problem for curve fitting relies highly on the experi-
ence of the operator, thereby causing that different researchers in
different labs will have diverse results in fitting a same sampled-
data.

3.3. The LEAN method

3.3.1. The Theorem of the LEAN method
Here we propose a new method called the “Level Evaluation

ANalysis” (LEAN) to solve the problem of data differentiation,
especially for processing the sampled-data from battery tests. The
LEANmethod is proficient to cope with the differentiation problem
for the data that has features as shown in the left side of Figs. 2 and
3. Fig. 3 illustrates the Theorem of the LEAN method. Consider the
sampled-data sequence y¼ {y1, y2, y3 … yn}, and x¼ {x1, x2, x3… xn}
are both quasi-monotonic. For x, the interval between xi and xiþ1 is
constant for arbitrary i, and define dX ¼ xiþ1 � xi. For y, there is
y1 � y2 � ::: yk � ::: yn�1 � yn. The sampling sequence y falls into a
discretized set of Y ¼ fj1; j2; j3; ::: jmg, where the digital sam-
pling interval between ji and jiþ1 is also constant for arbitrary i,
and define dY ¼ jiþ1 � ji. Assume Nji

refers to that ji appears Nji

times in y, then there holds the LEAN Theorem:8>>>><>>>>:
dx
dy

����
y¼ji

¼ Nji
,
dX
dY

dy
dx

����
y¼ji

¼ 1
Nji

,
dY
dX

(17)

Proof of the theorem
Fig. 3 helps illustrate the proof of the LEAN Theorem. Look at a

specific ji, the target is to calculate the local slope of the solid red

line in Fig. 3. The slope of the red line tan g ¼ dy
dx

����
Y¼ji

, whereas the

inverse of the slope cot g ¼ dx
dy

����
Y¼ji

. Then the proof comes out into

Eqn. (18):



Fig. 3. The Theorem of the LEAN method.
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cot g¼ dx
dy

����
Y¼ji

¼ Nji
,dX
dY

¼ Nji
,
dX
dY

(18)

where Nji
denotes that ji appears Nji

times in the sampled-data
set y. The second formula is the reciprocal of the first formula. ☒

3.3.2. The Corollary of the LEAN theorem
Corollary 1 of the theorem:

Suppose P ¼
(
pijpi ¼ dx

dy

����
Y¼ji

; i¼ 1;2; :::m

)
is the result of the

LEAN method, and y ¼ {y1, y2, y3 … yn} is quasi-monotonic, then y
can be reformulated byП. In other words, the LEAN resultП and the
sampled-signal y are equivalent, as shown in Fig. 4(a).

Proof of corollary 1:

Corollary 1 of the Theorem is obviously true, because for each
segment of y, yseg;i ¼ fykjyk ¼ jig2y, its length yseg;i ¼ Nji

can be
inferred by П, and the segments are arranged in a monotonic order,
both in the x and y axis. ☒

Corollary 2 of the theorem:
The LEAN Theorem still holds for data set y that is “approxi-

mately” quasi-monotonic. The word “approximately” means that
Fig. 4. The Corollaries of the LEAN method. a LEAN Corollary I, equivalency betwe
some sampled data may jump to adjacent values in real sampling
data set, as the red/black arrows shown in Fig. 4(b). This kind of
jumping is usually regarded as the sampling noise.

Proof of corollary 2:

In real data sampling, the jump is common at the boundary
where yk ¼ xi; ykþ1 ¼ xiþ1, caused by noise or the sampling drift.
Let Prðykþ1YÞ denotes the probability of one sampled-data jumping
down dY, whereas Prðyk [Þ denotes the probability of one sampling
data jumping up dY. Considering the independency and random-
ness of data sampling, we have Prðykþ1YÞ ¼ Prðyk [Þ, therefore
there will be no change in the overall LEAN results, as shown in
Fig. 4(b). ☒
3.3.3. Using the LEAN method to calculate the incremental capacity
For the incremental capacity analysis, we are calculating:

dQ
dV

����
V¼vi

¼ I,
dt
dV

����
V¼vi

(19a)

where Q is the charge/discharge capacity during the battery test, V
is the voltage of the battery cell, I¼Const is the current used during
IC testing, and t is the time. According to the LEAN Theorem, sub-
stitute y with V, and x with t, the ICA can thus be calculated by:
en raw data and differentiation result. b LEAN Corollary II, robustness to noise.



X. Feng et al. / eTransportation 3 (2020) 100051 7
dQ
dV

����
V¼vi

¼ I,
dt
dV

����
V¼vi

¼ I,cot g ¼ I,Nvi,
dt
dV

(19b)

cot g ¼ dt
dV

����
V¼vi

¼Nvi,
dt
dV

(20)

where dt ¼ Const is the sampling interval of time, and dV is the
sampling interval of voltage. Nvi is the counted frequency of V ¼ vi.
Fig. 5(a) illustrates the correctness of Eqn. (19) because the slope

cot g ¼ dt
dV

����
V¼vi

is in exact proportion to the counted frequency Nvi ,

as in Eqn. (20). For the convenience of further discussion, the
sampled-data set for voltage is defined as SV ¼ {V1, V2, V3 … Vn},
corresponding to y ¼ {y1, y2, y3 … yn} in the definitions of curve
fitting.

4. Results and discussions

4.1. The equivalence of the LEAN method and ICA/DVA

The equivalence of the LEAN method and ICA/DVA has been
represented mathematically in Eqn. (19). The thermodynamics of a
Fig. 5. Proof of the equivalence of the LEAN method and ICA. a The equivalence proof usin
voltage. The prefix “d” denotes differentiation, and “d” denotes the sampling interval; here d
test, e.g., tk is the kth sampled time. A voltage sequence of SV ¼ {V1, V2, …Vk, …Vn} is mea
discretized voltage set V ¼ {vi |i ¼ 1, 2, …m, viþ1-vi ¼ dV}, e.g., for the LFP sampled-data, the s
m ¼ 4 and the voltage set V ¼ {v1 ¼ 3.359 V, v2 ¼ 3.360 V, v3 ¼ 3.361 V, v4 ¼ 3.362 V}. Countin
in the sampled-data set SV. b The voltage curve of a commercial lithium-ion cell with LiFePO
fitting methods (SG and SVR) and that of the LEAN method. The characteristic peaks are m
cell can be calculated by the derivative of the state-of-charge over
voltage (dz/dV), which is a normalized value of ICA, as calculated in
Eqn. (21), where Q ¼ n$I$dt, and n is the total number of samples in
one test. Therefore, polynomial fitting is no longer required to
conduct differential analysis of the battery voltage, and the LEAN
method can be used to calculate the derivatives of voltage.

Incremental Capacity ¼ dz
dV

����
V¼vi

¼ 1
Q

dQ
dV

����
V¼vi

¼ Nvi

n
,
1
dV

(21)

Fig. 5(a) demonstrates an example data: the sampling data set SV

aremarked by blue dots, with a total length of n¼ 25. Fig. 5(b) is the
measure voltage of full state-of-charge. The discretized data range
is V ¼ {v1 ¼ 3.359 V, v2 ¼ 3.360 V, v3 ¼ 3.361 V, v4 ¼ 3.362 V} with
dV ¼ 1 mV, and the sampling interval is dt ¼ 0.1s. The set of
counting numbers is NV ¼ fNv1 ¼ 6; Nv2 ¼ 10; Nv3 ¼ 7; Nv4 ¼ 2g.
Therefore, dz/dV can be further calculated using Eqn. (21).

Reference ICA curves are derived using published smoothing
methods, SG29 and SVR33 (see Sec. III-Methods) to validate the
outcome of the LEAN method. Fig. 5(c) compares the IC curves
derived by the LEAN method, the SG method, and the SVR method,
with the characteristic peaks and their heights marked with col-
oured triangles. The shapes of the ICA curves for the LEAN, SG and
SVRmethods appear similar, with similar peak locations, indicating
g sampling segments. t is the time, Q is the charge/discharge capacity, and V is the cell
t ¼ 0.1 s and dV ¼ 1 mV. The subscript k denotes the kth sample measured during the
sured, n ¼ 25 for Fig. 5(a). Under discrete sampling conditions, each Vk falls into the
et V can be {2.750 V, 2.751V, 2.752 V, …3.199 V, 3.200 V, 3.201 V, …, 3.599 V, 3.600 V};
g the frequency Nvi such that Vk ¼ vi according to SV, we know that vi appears Nvi times
4/graphite electrodes. c Comparison between the results of ICA using traditional curve-
arked by solid triangles, with their locations and heights given in brackets.
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that the LEAN method is a reliable substitute for traditional data-
processing methods. The peak heights reported by the LEAN
method are always higher than those of the SG and SVR methods,
because the curve-fitting method always averages adjacent data
with an optimal solution, which weakens the concentration of data
points at voltage plateaus.

The correctness of the LEAN method in calculating the IC curve
is further validated using the battery data from THU, ICL, UoM and
NREL, as shown in Fig. 6 and Fig. 7. Fig. 6 compares the ICA results
derived by both the LEAN method and the reference method using
the traditional curve-fitting method (SVR or SG) considering ca-
pacity degradation for Cells A-F (see Table 1). The results strongly
demonstrate that the LEAN method and ICA are equivalent because
the ICA results derived by the LEAN method appear very similar to
those derived by the SVR and SG methods for all types of cell
chemistries at different state-of-healths. The differences in the
location of the ICA peaks (collected in Table 2) are usually small,
confirming the equivalency of the LEAN method and ICA. The ac-
curacy is further confirmed because the LEAN method can well
capture the voltage platforms of the graphite, as shown in Fig. 7(a).
And Fig. 7 further demonstrates the validity of LEAN method in
analysing cells with different chemistries.

4.2. Setting benchmarks for the curve-fitting methods

Setting the LEAN method as a benchmark in the differential
analysis of battery performance is here to be justified. As shown
in Figs. 3 and 5(a), the LEAN method simply counts the frequency
Fig. 6. Validation of the equivalence of the LEANmethod and ICA. Comparison between th
for 6 cells with different chemistries (see Table 1) from Tsinghua University, Imperial Colleg
the validity of the LEAN method throughout the full cycle life. The parameters {n, dt, dV}, used
cell label. The average difference in the location of the characteristic peaks reported by the t
of a specific voltage; therefore, the LEAN method will never
“under-fit” or “over-fit” the data. Furthermore, the raw voltage
data (although certain types of noise are permanently lost, but
this is not a bad thing) can be rebuilt given the LEAN result if the
counting bucket dV equals the sampling resolution dR and the
data set SV ¼ {V1, V2, V3 … Vn} is quasi-monotonic. In contrast, for
methods using curve fitting to smooth the data first, the fitness
can be controlled by tuning the cost function during optimiza-
tion; therefore, a researcher may show a desired peak location
and height by unfairly adjusting the parameters in the curve-
fitting algorithm. This explains why different researchers obtain
different results when performing differential analysis using the
same data, which continuously undermines the confidence in the
published ICA/DVA/DTV results.

Curve fitting is still useful, and many researchers will prefer to
interpret the smooth continuous functions that it provides; how-
ever, the LEAN method provides a benchmark to judge the curve-
fitting results. Under-fitting may be much easier to identify
through the fitting results of the voltage curve, as shown in Fig. 8(a).
However, distinguishing “over-fitting” and “good fitting” is more
difficult because the fitted curves in these two cases are quite
similar. According to the benchmark set by the LEANmethod in the
IC curve, it is easy to distinguish “over-fitting”, as shown in Fig. 8(b).
If over-fitting or under-fitting are identified according to the
benchmark set by the LEAN method, then an analyst knows that
they must use another set of parameters in their curve-fitting
algorithm.
e results of differential analysis using traditional methods and that of the LEAN method
e London, and University of Michigan, Ann Arbor. Degradation data are used to confirm
to calculate the ICA curves using Eqn. (21), are noted in the upper left corner under the
raditional curve-fitting method and that reported by the LEAN method is also marked.



Fig. 7. Validation of the LEAN method in calculating incremental capacity curves for cells with different chemistries. a Graphite vs. Li half-cell, data from National Renewable
Energy Laboratory, U.S., including the charge and discharge curve with 1/10C current, and the incremental capacity calculated by the LEAN method, the locations of the peaks
conform to those in “Ohzuku, T., Iwakoshi, Y., Sawai, K. J. Electrochem. Soc. 140(9), 2490e2498.” b Silicon Oxide-Graphite vs. Li half-cell, data from Tsinghua University, including
charge and discharge curve with 1/30C current, and the incremental capacity calculated by the LEAN method. c Li4Ti5O12 vs Li half-cell, with 1/10C current. d LiFePO4 vs Li half-cell,
with 1/10C current. e LiMn2O4 vs Li half-cell, with 1/3C current. f LiMn2O4eLiNi1/3Co1/3Mn1/3O2 vs Li half-cell, with 1/30C current. g LiNi1/3Co1/3Mn1/3O2 vs Li half-cell, with 1/30C
current. h LiNi0$5Co0$2Mn0$3O2 vs Li half-cell, with 1/30C current. i LiNi0$6Co0$2Mn0$2O2 vs Li half-cell, with 1/40C current. j LiNi0$8Co0$1Mn0$1O2 vs Li half-cell, with 1/40C current.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 2
Comparison of the peak position and height calculated by the LEAN method and other methods.

Cell Capacity
Retention

LEAN
Peak Locations/V

SVR Method
Diff./mV

Cell Capacity
Retention

LEAN
Peak Locations/V

SG Method
Diff./mV

A 100% 3.274, 3.355, 3.390 þ12, �4, �5 D 100% 3.495, 3.680 �24, �3
91.1% 3.275, 3.358, 3.399 þ16, 0, 0 95.1% 3.480, 3.650 �55, �2
85.3% 3.275, 3.358, 3.399 þ17, þ2, þ2 83.9% 3.615 �16
78.7% 3.275, 3.369, 3.399 þ21, �7, 0 74.9% 3.570 �4

B 100% 3.257, 3.348, 3.388 þ11, 0, þ2 E 100% 3.500, 3.815, 3.990 �4, þ3, þ1
99.7% 3.257, 3.348, 3.388 þ11, þ1,þ3 95.5% 3.475, 3.815, 3.990 þ6, þ2, þ2
97.8% 3.257, 3.351, 3.388 þ12, 0, þ5 93.3% 3.485, 3.815, 3.990 �1, �9, þ6
95.7% 3.266, 3.351, 3.400 þ4, þ2, 0 79.8% 3.460, 3.815, 3.93 þ32, �32, �19

C 100% 3.522, 3.659 þ18, �3 F 100% 2.352 þ1
97.6% 3.509, 3.659 þ17, þ1 98.7% 2.354 þ3
90.5% 3.509, 3.668 þ19, þ2 98.4% 2.356 þ1
78.8% 3.526, 3.677 þ15, þ5 97.3% 2.354 þ1

Fig. 8. LEAN method regarded as a benchmark for calculating differentiations of battery voltage curves. a The curve fitting for Cell A using both the LEAN method and the SVR
method. Note that with different settings of curve-fitting parameters, the SVR may return result of good-fitting, overfitting, or under-fitting. b The voltage differentiation for Cell A
using the LEAN method is set as a benchmark for the SVR method.
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4.3. The equivalence of the LEAN method and DTV

The LEAN method can calculate the differentiations in temper-
ature curves, which includes changing the voltage “V” into “T” to
yield Eqn. (21):

dz
dT

����
T¼qj

¼ 1
Q

dQ
dT

����
T¼qj

¼
Nqj

n
,
1
dT

(22)

For the data set SV ¼ {V1, V2, V3 … Vn}, discretized sampling set
V ¼ fviji ¼ 1;2; ::: m; viþ1 � vi ¼ dVg, and counting set NV ¼
fNvi

��i¼ 1;2; ::: mg for the voltage signal, we get ST¼ {T1, T2, T3… Tn},
T ¼ fqj

��j¼ 1;2; ::: l; qjþ1 �qj ¼ dTg and NT ¼ fNqj

��i¼ 1;2; :::lg for

the temperature signal. The LEAN method can then calculate the
DTV, dT/dV as in Ref. [39]. First, the counting sets NT and NV are
generated separately using the LEAN method. Second, NT and NV at
a specific time tk are divided, and the DTV curve is derived:

dT
dV

����
t¼tk

¼dT
dz

,
dz
dV

����
t¼tk

¼Nvi

Nqj

,
dT
dV

;
�
Vk ¼ vi; Tk ¼ qj

�
(23)

The DTV curves over different degradation stages derived by the
LEAN method, as shown in Fig. 9, look similar to those in Ref. [39],
which used a mixed curve-fitting method considering both the
moving average and polynomial functions. The DTV results further
validate that the LEAN method is correct.
4.4. Bucket selection for frequency counting

The selection of proper dV when applying the LEAN method is
critical. The peak location and height are the two most important
characteristics of the IC curve, and most research papers studying
battery degradation base their conclusions on the variation of these
two characteristics. Intuitively, dV not only influences the peak
height according to Eqn. (21) but also determines the resolution of
the peak location. dV should be a multiple of the original sampling
resolution dR (dV ¼ K$dR, where K is an integer) to guarantee fair
counting in the LEAN method, as shown in Fig. 10(a). Unfair
counting (dVsK$dR) leads to periodic fluctuations in the curves,
whereas fair counting (dV¼ 2$dR) leads to good curves, as shown in
Fig. 10(b). However, sometimes fair counting also leads to fluctua-
tions in the curves when dV¼ dR, as shown in Fig. 10(b). A sampling
error or noise in the raw data with a magnitude of sV causes
instability in the counting process, as shown in Fig. 10(c). The
instability caused by sV can be eliminated by expanding the sam-
pling bucket to dV¼ K$dR>sV. In summary, in the trade-off between
high-resolution peak location and the elimination of fluctuations,
the optimal sampling bucket should be selected as dV ¼ K$dR>sV,
with (K-1)$dR � sV.



Fig. 9. Using the LEAN method to calculate differentiations in temperature and DTV. a The raw temperature and voltage data. b The counting numbers at sampled levels. c The
calculated DTV using the LEAN method compared with that in Ref. [39].

Fig. 10. The principle of selecting the proper bucket length for counting in the LEAN method. a Fair counting and unfair counting. Fair counting means that the counting bucket
dV is K (K is an integer) times the sampling resolution dR, where each counting bucket [vi, viþ1) contains k times sampling intervals [ri, riþ1). k is the rounded integer of K. Unfair
counting means that dV is not integer times dR. Therefore, [vi, viþ1) sometimes contains k times [ri, riþ1) and sometimes kþ1 times, resulting in fluctuations in the LEAN results. b
LEAN results using different counting buckets. For unfair counting when dVsK$dR, large fluctuations can be seen in the LEAN results. For fair counting if dV¼1 mV is not larger than
sV ¼ 1 mV, there are still some fluctuations. When dV¼2 mV>sV ¼ 1 mV, the LEAN results appear better. c The counting bucket can be expanded to contain fluctuations or noise in
the raw data to reduce the fluctuations in the LEAN results. Here, the voltage fluctuation sV is 1 mV; therefore, ideally, dV ¼ 2$dR ¼ 2 mV>sV.
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Fig. 11. Reversible smoothing after level evaluation, ensuring the universality of
the LEAN method. When dV ¼ 1 mV �sV, the LEAN results show fluctuations. The
fluctuations are attenuated once we choose dV¼2 mV>sV. Filter① in Table 3, a ¼ [0.25,
0.5, 0.25]T with w ¼ 1, can smooth the LEAN results with dV ¼ 1 mV, whereas Filter ②
in Table 3, a ¼ [0.0668, 0.2417, 0.3830, 0.2417, 0.0668]T with w ¼ 2, can further smooth
the LEAN results with dV ¼ 2 mV.
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4.5. Reversible smoothing ensures universality of the LEAN method

Smoothing is possible after calculating the differentiations using
the LEAN method. The after-smoothing can remove fluctuations in
the ICA curve for dV � sV, with the same effect brought by
expanding the bucket width, as shown in Fig. 11. If the smoothing is
reversible, the universality of the LEAN method still holds because
we can still rebuild the raw data from the result. To simplify the

discussion, let vector p ¼ [p1, p2,…pm]T, pi ¼ dz
dV

����
V¼vi

represents the

result calculated by the LEAN method, whereas vector

p* ¼ ½p*
1;p

*
2; :::p

*
m�

T represents the result after smoothing. a¼[a-w,
a-wþ1,…a-1, a0, a1,…, aw-1, aw]T is a filtering vector with a length of

2wþ1. The sum of the elements in a should be 1 (
Pj¼w

j¼�w
aj ¼ 1) to

avoid deformation of the original result. Take pw
k ¼

½pk�w…pk�1; pk;pkþ1…pkþw�T as a piecewise vector extracted
from p centred at pk, then:

p*
k ¼aT,pw

k (24)

Define a filtering matrix Am that is expanded by the filtering
vector a such that:

p* ¼Am,p (25)

The filtering matrix Am 2 Rm�m is presented in Eqn. (20), where
m is the total number of the sampled discrete data V, V ¼ fviji ¼
1;2; ::: m;viþ1 � vi ¼ dVg. If Am is reversible, we can infer p from p*
without information loss. Therefore, different researchers in
different labs will have identical IC results derived from the raw
data using the LEAN method if they share the same Am.



Table 3
Recommended reversible smoothing filter a for the LEAN method.

No. a w Purpose

① [0.25, 0.50, 0.25]T 1 Average of the adjacent value
② [0.0668, 0.2417, 0.3830, 0.2417, 0.0668]T 2 For noise ε~N(0,s), s ¼ dV
③ [0.1059, 0.121, 0.1745, 0.1972, 0.1745, 0.121, 0.1059]T 3 For noise ε~N(0,s), s ¼ 2$dV
④ [(2wþ1)�1, …, (2wþ1)�1, …, (2wþ1)�1]T Arbitrary value Moving average
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We can provide some simple a that can guarantee that Am is
reversible, as listed in Table 3. The construction of a may consider
the probability of noisy fluctuations, such as the standardized
normal distribution N(0,s). The filters have good effects on
smoothing the ICA curves, as shown in Fig. 11. Researchers can also
deduct their customized filter {a, Am} but must remember to state
{a, Am} when sharing their results.
4.6. The computational complexity Q(n) for online implementation

The computational complexity of the LEAN method is Q(n),
making it promising for processing real-time data online. The
pseudocode for the LEAN method is given as in Table 4. The total
cost during one LEAN calculation is expected to be G(n) ¼ nþ2(m-
1)þΟ(1) ¼ Ο(n), given that the number of the sampling bucketm is
far less than the total length n in the battery degradation data. The
low computational load (G(n) ¼ Q(n)) indicates that LEAN is a
promising approach for online state-of-health evaluation.

Table 5 compares the computational complexity of the LEAN
method with common smoothing algorithms (SVR and SG),
considering their accuracies. The first row collects the critical pa-
rameters in the algorithms that can influence the computational
complexity G(n). The SVR method always has G(n) ¼ Q(n2), indi-
cating a long-time computation when processing big data with
large n. Therefore, in current applications33, the trick is to resample
and downsize the data from n to n/D. However, resampling the data
leads to information loss. Although both the G(n) of the SG method
Table 4
Pseudocode for the LEAN method.

Step Pseudocode

(1) Initialization: The counting bucket B1 ¼ [v1, v2), such that V12B1, set the
index of bucket i ¼ 1

(2) for: k from 1 to n (Go through each sampled data in SV)
(3) while Vk ; Bi ¼ [vi, viþ1) (find the proper bucket)
(4) If Vk 2 Bi, counter Nvi ¼ Nvi þ 1, break the while loop and jump to (2).

Otherwise go to (5).
(5) If Vk < vi, set i ¼ i-1; Otherwise Vk � viþ1, set i ¼ iþ1. Until Vk 2 Bi
(6) while end
(7) for end

Table 5
Comparison of the computational complexity and accuracy of the LEAN method and oth

Differentiation method SG in Ref. [29] SVR in Ref. [33]

Critical parameters Window length: w Resampling div
Polynomial order: p

Computational
complexity G(n)

G(n) ¼ 2wp2nþΟ(n) ¼ Q(n), w can be very
large, w ¼ 475 in Ref. [31] GðnÞ ¼ n2

D2 þ Οðn
Accuracy Possible over-fitting or under-fitting Possible over-fi

downsize the sa
Smoothing after

calculation
No need No need

Same data, same
differentiation result

No, every lab varies No, every lab va
and that of the LEANmethod areQ(n), theG(n) for the SGmethod is
a multivariate function that can be expressed by Q(w) or Q(p2),
where p is the highest order for the polynomial used in fitting, and
p � 3 is commonly used. However, w for the SG method should be
large for the least squares algorithm to find a meaningful optimum.
In Ref. [31],w is set as 475, and in this paper,w is always larger than
100 to obtain good smoothing. Hence, the computational load for
the LEANmethod is commonly less than 1/100 compared with that
for the SG method. Fig. 12 compares the computation time for the
LEAN method, the SG method and the SVR method, using a per-
sonal computer. The computational time of the LEAN method is
obviously lower than that of the SG method and the SVR method,
especially for big data with large length n, indicating that the LEAN
method is promising to process large scale data.

As mentioned, the accuracy of the location and height of the
peaks in ICA/DVA/DTV are critical for interpreting the battery
degradation data. However, previous methods always risk over-
fitting or under-fitting by improper parameter settings, and there
is no benchmark to evaluate the accuracy of the ICA/DVA/DTV peak.
In this paper, the benchmark is set by the LEAN method, which
retains the full information of the original data. Nevertheless, the
LEAN method may require curve smoothing after counting. The
G(n) will be influenced by both Q(n) and Q(w). Fortunately, Fig. 11
shows that w can be very small (generally w � 3) because most of
the filtering load has already been done by the LEAN counting.
4.7. Applications of the LEAN method

Based on the above discussions, the invention of LEAN method
will significantly help the utilization of differential analysis (ICA,
DVA, DTV) in the field of battery aging diagnosis. The application of
differential analysis for battery aging diagnosis can be tracked back
to Refs. [36,42], which are both classical in aging mechanism
identification for lithium-ion batteries. The invention of LEAN
method guarantees that different researchers at different labora-
tories with a same set of battery aging data will get same result of
differential analysis, significantly improving the universality of ICA/
DVA/DTV in field applications. In this paper, the central message is
that how the LEAN method help processing the discrete sampled-
data to generate ICA/DVA/DTV curves. We do not go into the de-
tails on how to use differential analysis to diagnose the battery
er methods.

LEAN in this paper

ider: D Bucket broad: dV
Window length: w (for
smoothing)

2Þ ¼ Qðn2Þ given the code in Ref. [35]
G(n) ¼ nþΟ(1) ¼ Q(n)

tting or under-fitting; information loss when
mple set by dividing by D

No over-fitting or under-
fitting; depends on dV
G(n) ¼ 2wnþΟ(1) ¼ Q(n),
w � 3 commonly

ries Yes, given dV and a



Fig. 12. Comparison of the computation time for different curve fitting approaches. The computation is conducted by a laptop with Intel® Core™ i7-6820HK CPU @2.70 GHz,
with 16 GB RAM. The code is run in MATLAB R2018a®, using m code attached in the Appendix.
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aging behaviours. Interested readers can find more recent refer-
ences that are studying the battery aging mechanisms using ICA/
DVA. There are emerging researches [35,43,44] discussing the ap-
plications of ICA/DVA on associations of cells (or we call “battery
pack”). The LEAN method sets a benchmark for data processing,
therefore the application in both cell and pack level will be con-
vincible to reflect the aging characteristics reported by the
sampled-data. The classical ICA/DVA is using low current (C/25, C/
20, etc.) to guarantee thermodynamic equilibrium in generating
battery voltage curves [18,42]. Of course, the LEAN method is
competent to process the differentiation of voltage under low
current charge/discharge. We can also see that the LEAN method
can process voltage data that is generated by relatively high current
charge/discharge, as listed in Table 1. Large currents, although un-
dermines the assumption of “equilibrium” thermodynamic state of
battery cell, may provide “quasi-equilibrium” state for aging char-
acterization. Successful practices can be seen in
Refs. [27,31,33,36,45], in which the applied currents range from C/5
to 2C. This paper already demonstrates that the sampled-data in
those papers can use the LEAN method to do differential analysis.
Moreover, partial charging/discharging is quite common in the field
application of electrochemical energy storage systems, especially
for electric vehicles. Correlated demonstrations of the usage of ICA/
DVA in online battery diagnosis using partial charging curves can
be seen in Refs. [46,47]. In summary, although this paper did not go
into the detailed applications of the differential analysis (ICA/DVA/
DTV) in field applications, the properties of the LEAN method are
promising for further vehicular application in both the big data
analysis on the cloud and the online batterymonitoring, supporting
the intelligent management of all kinds of electrochemical energy
storage systems for electric vehicles, portable electronics, and po-
wer stations.

We should also remind that the LEAN method can process the
differentiation of discrete sampled-data not just for battery tests,
for voltage, or for temperature curves. According to the universality
of the Theorem of the LEAN method, it can do the differentiation
work for all kinds of discrete sampled-data. As we only have data of
battery aging, we add “for battery diagnosis” in the title to be strict
with the content of this paper. The deeper meaning of the LEAN
method for differentiating discrete sampled-data might be still
waiting for mathematicians to discover in the future.
5. Conclusion

A universal approach named the “Level Evaluation ANalysis”
(LEAN) method is proposed for calculating differentiations in data
for battery aging analysis. The LEAN method has been shown to
work effectively for the derivation of different types of differential
curves (ICA/DVA/DTV), with minimal loss of information and no
risk of creating information or over-fitting/under-fitting. The LEAN
method will allow results to be standardized and compared
because every lab will obtain identical result using the LEAN
method when analysing the same data. Therefore, the LEAN
method is proposed as a benchmark for all types of curve-fitting
methods that are used to derive ICA/DVA/DTV curves. Further-
more, the computational complexity of the LEAN method is only
G(n) ¼Q(n), making it promising for online diagnosis algorithms in
the near future. The conclusions above are based on strict mathe-
matical deductions. Moreover, every conclusion is supported by
experimental validation, the data of which come from laboratories
in China, the U.K., and the U.S., representing a snapshot of data from
around the world. Future work will focus on applying the LEAN
method to specific cases, such as the vehicular applications in both
the big data analysis on the cloud and the online battery moni-
toring, the intelligent management of all kinds of electrochemical
energy storage systems for electric vehicles, portable electronics,
and power stations.

The good properties of the LEAN method in processing the dif-
ferentiation of discrete sampled-data are also interesting in the
view of math. As we have not seen that relative literature in math is
talking about similar issues, we sincerely welcomemathematicians
and scientists in signal processing to collaborate to explore the
truth of the LEAN method.
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